
0.6

Set protocol (TokenSets) Process Quality Review

Score 84%

This is a Process Quality Review of completed on November 9, 2020. It was performed using
the Process Review process (version 0.6) and is documented . The review was performed by
ShinkaRex of . Check out our .

Set Protocol
here

Caliburn Consulting Telegram

The final score of the review is 84%, a solid pass. The breakdown of the scoring is in . Scoring Appendix

Summary of the Process

Very simply, the review looks for the following declarations from the developer's site. With these
declarations, it is reasonable to trust the smart contracts.

Here are my smart contracts on the blockchain

Here is the documentation that explains what my smart contracts do

Here are the tests I ran to verify my smart contract

Here are the audit(s) performed on my code by third party experts

Disclaimer

This report is for informational purposes only and does not constitute investment advice of any kind, nor
does it constitute an offer to provide investment advisory or other services. Nothing in this report shall be
considered a solicitation or offer to buy or sell any security, future, option or other financial instrument or to
offer or provide any investment advice or service to any person in any jurisdiction. Nothing contained in this
report constitutes investment advice or offers any opinion with respect to the suitability of any security, and
the views expressed in this report should not be taken as advice to buy, sell or hold any security. The
information in this report should not be relied upon for the purpose of investing. In preparing the information
contained in this report, we have not taken into account the investment needs, objectives and financial
circumstances of any particular investor. This information has no regard to the specific investment
objectives, financial situation and particular needs of any specific recipient of this information and
investments discussed may not be suitable for all investors.

Any views expressed in this report by us were prepared based upon the information available to us at the
time such views were written. Changed or additional information could cause such views to change. All
information is subject to possible correction. Information may quickly become unreliable for various reasons,
including changes in market conditions or economic circumstances.

This completed report is copyright (c) DeFiSafety 2021. Permission is given to copy in whole, retaining this
copyright label.

https://www.tokensets.com/
https://docs.defisafety.com/review-process-documentation/process-quality-audit-process
https://caliburnc.com/
https://t.me/joinchat/Hnf-exmsTNGgmq6SYKCPCA

Code and Team

This section looks at the code deployed on the Mainnet that gets reviewed and its corresponding software
repository. The document explaining these questions is . This review will answer the questions;here

1. Are the executing code addresses readily available? (Y/N)

2. Is the code actively being used? (%)

3. Is there a public software repository? (Y/N)

4. Is there a development history visible? (%)

5. Is the team public (not anonymous)? (Y/N)

Are the executing code addresses readily available? (Y/N)

Answer: Yes

They are available at website as indicated in the https://docs.tokensets.com/protocol/untitled Appendix.

Is the code actively being used? (%)

Answer:100%

Activity is 14 transactions a day on contract BasicIssuanceModel.sol, as indicated in the .Appendix

Percentage Score Guidance

100% More than 10 transactions a day
70% More than 10 transactions a week
40% More than 10 transactions a month
10% Less than 10 transactions a month
0% No activity

Is there a public software repository? (Y/N)

Answer: Yes

The public repo is : https://github.com/SetProtocol/set-v2/tree/master/contracts/protocol

Is there a public software repository with the code at a minimum, but normally test and scripts also (Y/N).
Even if the repo was created just to hold the files and has just 1 transaction, it gets a Yes. For teams with
private repos, this answer is No.

https://docs.defisafety.com/review-process-documentation/process-quality-audit-process#code-and-team
https://docs.tokensets.com/protocol/untitled
https://github.com/SetProtocol/set-v2/tree/master/contracts/protocol

How to improve this score

Maintain a public repo, at least for deployed code. Public repo's are in line with the vision of Ethereum
where development is shared and public.

Is there a development history visible? (%)

Answer: 100%

Set protocol has a well-developed github with 800+ commits and 10 branches.

Location: https://github.com/SetProtocol

This checks if the software repository demonstrates a strong steady history. This is normally demonstrated
by commits, branches and releases in a software repository. A healthy history demonstrates a history of
more than a month (at a minimum).

Guidance:
100% Any one of 100+ commits, 10+branches
70% Any one of 70+ commits, 7+branches
50% Any one of 50+ commits, 5+branches
30% Any one of 30+ commits, 3+branches
0% Less than 2 branches or less than 10 commits

How to improve this score

Continue to test and perform other verification activities after deployment, including routine maintenance
updating to new releases of testing and deployment tools. A public development history indicates clearly to
the public the level of continued investment and activity by the developers on the application. This gives a
level of security and faith in the application.

Is the team public (not anonymous)? (Y/N)

Answer: Yes

The team can be viewed at: https://www.tokensets.com/about

Documentation

This section looks at the software documentation. The document explaining these questions is .here

Required questions are;

1. Is there a whitepaper? (Y/N)

2

https://github.com/SetProtocol
https://www.tokensets.com/about
https://docs.defisafety.com/review-process-documentation/process-quality-audit-process#documentation

2. Are the basic software functions documented? (Y/N)

3. Does the software function documentation fully (100%) cover the deployed contracts? (%)

4. Are there sufficiently detailed comments for all functions within the deployed contract code (%)

5. Is it possible to trace from software documentation to the implementation in codee (%)

Is there a whitepaper? (Y/N)

Answer: Yes

Location: https://docs.tokensets.com/protocol/litepaper

How to improve this score

Ensure the white paper is available for download from your website or at least the software repository.
Ideally update the whitepaper to meet the capabilities of your present application.

Are the basic software functions documented? (Y/N)

Answer: Yes

Location: https://docs.tokensets.com/api/set-token

How to improve this score

Write the document based on the deployed code. For guidance, refer to the
.

SecurEth System Description
Document

Does the software function documentation fully (100%) cover the deployed contracts? (%)

Answer: 65%

Many functions are defined in the litepaper and their operation, but it is not directly corelated to the deployed
code. Then there is an API section () which details the IO for major
public functions. Together they give a good bit of documentation. This resulted in a 65% score.

https://docs.tokensets.com/api/set-token

Guidance:

100% All contracts and functions documented
80% Only the major functions documented
79-1% Estimate of the level of software documentation
0% No software documentation

https://docs.tokensets.com/protocol/litepaper
https://docs.tokensets.com/api/set-token
https://guidelines.secureth.org/project-planning/system-description
https://docs.tokensets.com/api/set-token

How to improve this score

This score can improve by adding content to the requirements document such that it comprehensively
covers the requirements. For guidance, refer to the . Using tools
that aid traceability detection will help.

SecurEth System Description Document

Are there sufficiently detailed comments for all functions within the deployed contract code (%)

Answer: 60%

There are useful comments present in the code, explaining the execution of the code.

Code examples are in the . As per the , there is 40% commenting to code (CtC).Appendix SLOC

The Comments to Code (CtC) ratio is the primary metric for this score.

Guidance:
100% CtC > 100 Useful comments consistently on all code
90-70% CtC > 70 Useful comment on most code
60-20% CtC > 20 Some useful commenting
0% CtC < 20 No useful commenting

How to improve this score

This score can improve by adding comments to the deployed code such that it comprehensively covers the
code. For guidance, refer to the .SecurEth Software Requirements

Is it possible to trace from software documentation to the implementation in code (%)

Answer: 30%

In the API there is clear tracability between the software and the code, although only a limited number of the
functions are documented.

Guidance:
100% - Clear explicit traceability between code and documentation at a requirement level for all code
60% - Clear association between code and documents via non explicit traceability
40% - Documentation lists all the functions and describes their functions
0% - No connection between documentation and code

How to improve this score

 This score can improve by adding traceability from requirements to code such that it is clear where each
requirement is coded. For reference, check the SecurEth guidelines on .traceability

https://guidelines.secureth.org/project-planning/system-description
https://guidelines.secureth.org/development/software-requirements
https://guidelines.secureth.org/development/traceability

Testing

This section looks at the software testing available. It is explained in this . This section answers
the following questions;

document

1. Full test suite (Covers all the deployed code) (%)

2. Code coverage (Covers all the deployed lines of code, or explains misses) (%)

3. Scripts and instructions to run the tests (Y/N)

4. Packaged with the deployed code (Y/N)

5. Report of the results (%)

6. Formal Verification test done (%)

7. Stress Testing environment (%)

Is there a Full test suite? (%)

Answer: 100%

The TtC ratio is 415%, indicating a highly through set of tests.

This score is guided by the Test to Code ratio (TtC). Generally a good test to code ratio is over 100%.
However the reviewers best judgement is the final deciding factor.

Guidance:
100% TtC > 120% Both unit and system test visible
80% TtC > 80% Both unit and system test visible
40% TtC < 80% Some tests visible
0% No tests obvious

How to improve this score

This score can improve by adding tests to fully cover the code. Document what is covered by traceability or
test results in the software repository.

Code coverage (Covers all the deployed lines of code, or explains misses) (%)

Answer: 50%

Because there is no public repository, we can't see any tests, and there are no separate test documentaton
or reports.

Guidance:
100% - Documented full coverage
99-51% - Value of test coverage from documented results

https://docs.defisafety.com/review-process-documentation/process-quality-audit-process#testing

50% - No indication of code coverage but clearly there is a reasonably complete set of tests
30% - Some tests evident but not complete
0% - No test for coverage seen

How to improve this score

This score can improve by adding tests achieving full code coverage. A clear report and scripts in the
software repository will guarantee a high score.

Scripts and instructions to run the tests (Y/N)

Answer: Yes

In their github, there is documentation indicating how to run the tests.

Location: https://github.com/SetProtocol/set-v2

How to improve this score

Add the scripts to the repository and ensure they work. Ask an outsider to create the environment and run
the tests. Improve the scripts and docs based on their feedback.

Packaged with the deployed code (Y/N)

Answer: Yes

The tests are packaged with the deployed code.

How to improve this score

Improving this score requires redeployment of the code, with the tests. This score gives credit to those who
test their code before deployment and release them together. If a developer adds tests after deployment they
can gain full points for all test elements except this one.

Report of the results (%)

Answer: 0%

There is no evident report of the results.

How to improve this score

Add a report with the results. The test scripts should generate the report or elements of it.

https://github.com/SetProtocol/set-v2

Formal Verification test done (%)

Answer: 0%

There is no evident Formal Verification testing having been done.

Stress Testing environment (%)

Answer: 100%

There is clear stress testing done on the Kovan network.

Audits

Answer: 90%

There are two audits that have been preformed by , and ABDK. There is no public report
available for the ABDK audit.

OpenZeppelin

Guidance:

1. Multiple Audits performed before deployment and results public and implemented or not required
(100%)

2. Single audit performed before deployment and results public and implemented or not required (90%)

3. Audit(s) performed after deployment and no changes required. Audit report is public. (70%)

4. No audit performed (20%)

5. Audit Performed after deployment, existence is public, report is not public and no improvements
deployed OR smart contract address' not found, question 1 (0%)

Appendices

Author Details

The author of this review is Rex of .Caliburn Consulting

Email : defisafety.com Twitter : @defisafety rex@

https://blog.openzeppelin.com/set-protocol-audit/
https://caliburnc.com/
mailto:rex@caliburnc.com

I started with Ethereum just before the DAO and that was a wonderful education. It showed the importance of
code quality. The second Parity hack also showed the importance of good process. Here my aviation
background offers some value. Aerospace knows how to make reliable code using quality processes.

I was coaxed to go to EthDenver 2018 and there I started with Bryant and Roman. We created
guidelines on good processes for blockchain code development. We got to assist in
their development.

SecuEth.org
EthFoundation funding

Process Quality Reviews are an extension of the SecurEth guidelines that will further increase the quality
processes in Solidity and Vyper development.

Career wise I am a business development manager for an avionics supplier.

Scoring Appendix

Executing Code Appendix

https://guidelines.secureth.org/
https://blog.ethereum.org/2018/05/02/announcing-may-2018-cohort-ef-grants/

Code Used Appendix

Example Code Appendix

1
contract BasicIssuanceModule is ModuleBase, ReentrancyGuard {2
 using Invoke for ISetToken;3
 using Position for ISetToken.Position;4
 using Position for ISetToken;5
 using PreciseUnitMath for uint256;6
 using SafeMath for uint256;7

 using SafeCast for int256;8
9
 /* ============ Events ============ */10

11
 event SetTokenIssued(12
 address indexed _setToken,13
 address indexed _issuer,14
 address indexed _to,15
 address _hookContract,16
 uint256 _quantity17
);18
 event SetTokenRedeemed(19
 address indexed _setToken,20
 address indexed _redeemer,21
 address indexed _to,22
 uint256 _quantity23
);24

25
 /* ============ State Variables ============ */26

27
 // Mapping of SetToken to Issuance hook configurations28
 mapping(ISetToken => IManagerIssuanceHook) public managerIssuanceHook;29

30
 /* ============ Constructor ============ */31

32
 /**33
 * Set state controller state variable34
 *35
 * @param _controller Address of controller contract36
 */37
 constructor(IController _controller) public ModuleBase(_controller) {}38

39
 /* ============ External Functions ============ */40

41
 /**42
 * Deposits the SetToken's position components into the SetToken and mints the SetToken43
 * to the specified _to address. This function only handles Default Positions (position44
 *45
 * @param _setToken Instance of the SetToken contract46
 * @param _quantity Quantity of the SetToken to mint47
 * @param _to Address to mint SetToken to48
 */49
 function issue(50
 ISetToken _setToken,51
 uint256 _quantity,52
 address _to53
)54
 external55
 nonReentrant56
 onlyValidAndInitializedSet(_setToken)57
 {58
 require(_quantity > 0, "Issue quantity must be > 0");59

60

 address hookContract = _callPreIssueHooks(_setToken, _quantity, msg.sender, _to);
61

62
 (63
 address[] memory components,64
 uint256[] memory componentQuantities65
) = getRequiredComponentUnitsForIssue(_setToken, _quantity);66

67
 // For each position, transfer the required underlying to the SetToken68
 for (uint256 i = 0; i < components.length; i++) {69
 // Transfer the component to the SetToken70
 transferFrom(71
 IERC20(components[i]),72
 msg.sender,73
 address(_setToken),74
 componentQuantities[i]75
);76
 }77

78
 // Mint the SetToken79
 _setToken.mint(_to, _quantity);80

81
 emit SetTokenIssued(address(_setToken), msg.sender, _to, hookContract, _quantity);82
 }83

84
 /**85
 * Redeems the SetToken's positions and sends the components of the given86
 * quantity to the caller. This function only handles Default Positions (positionState 87
 *88
 * @param _setToken Instance of the SetToken contract89
 * @param _quantity Quantity of the SetToken to redeem90
 * @param _to Address to send component assets to91
 */92
 function redeem(93
 ISetToken _setToken,94
 uint256 _quantity,95
 address _to96
)97
 external98
 nonReentrant99
 onlyValidAndInitializedSet(_setToken)100
 {101
 require(_quantity > 0, "Redeem quantity must be > 0");102

103
 // Burn the SetToken - ERC20's internal burn already checks that the user has enoug104
 _setToken.burn(msg.sender, _quantity);105

106
 // For each position, invoke the SetToken to transfer the tokens to the user107
 address[] memory components = _setToken.getComponents();108
 for (uint256 i = 0; i < components.length; i++) {109
 address component = components[i];110
 require(!_setToken.hasExternalPosition(component), "Only default positions are 111

112
i 2 6 i T k D f l P i i R lU i () Ui 2 6()

 uint256 unit = _setToken.getDefaultPositionRealUnit(component).toUint256();113
114

 // Use preciseMul to round down to ensure overcollateration when small redeem q115
 uint256 componentQuantity = _quantity.preciseMul(unit);116

117
 // Instruct the SetToken to transfer the component to the user118
 _setToken.strictInvokeTransfer(119
 component,120
 _to,121
 componentQuantity122
);123
 }124

125
 emit SetTokenRedeemed(address(_setToken), msg.sender, _to, _quantity);126
 }127

128
 /**129
 * Initializes this module to the SetToken with issuance-related hooks. Only callable b130
 * Hook addresses are optional. Address(0) means that no hook will be called131
 *132
 * @param _setToken Instance of the SetToken to issue133
 * @param _preIssueHook Instance of the Manager Contract with the Pre-Issuance 134
 */135
 function initialize(136
 ISetToken _setToken,137
 IManagerIssuanceHook _preIssueHook138
)139
 external140
 onlySetManager(_setToken, msg.sender)141
 onlyValidAndPendingSet(_setToken)142
 {143
 managerIssuanceHook[_setToken] = _preIssueHook;144

145
 _setToken.initializeModule();146
 }147

148
 /**149
 * Reverts as this module should not be removable after added. Users should always150
 * have a way to redeem their Sets151
 */152
 function removeModule() external override {153
 revert("The BasicIssuanceModule module cannot be removed");154
 }155

156
 /* ============ External Getter Functions ============ */157

158
 /**159
 * Retrieves the addresses and units required to mint a particular quantity of SetToken160
 *161
 * @param _setToken Instance of the SetToken to issue162
 * @param _quantity Quantity of SetToken to issue163
 * @return address[] List of component addresses164
 * @return uint256[] List of component units required to issue the quantity 165

*/

 */166
 function getRequiredComponentUnitsForIssue(167

 ISetToken _setToken,168

 uint256 _quantity169
)170
 public171
 view172
 onlyValidAndInitializedSet(_setToken)173
 returns (address[] memory, uint256[] memory)174
 {175
 address[] memory components = _setToken.getComponents();176

177
 uint256[] memory notionalUnits = new uint256[](components.length);178

179
 for (uint256 i = 0; i < components.length; i++) {180
 require(!_setToken.hasExternalPosition(components[i]), "Only default positions 181

182
 notionalUnits[i] = _setToken.getDefaultPositionRealUnit(components[i]).toUint25183
 }184

185
 return (components, notionalUnits);186
 }187

188
 /* ============ Internal Functions ============ */189

190
 /**191
 * If a pre-issue hook has been configured, call the external-protocol contract. Pre-is192
 * can contain arbitrary logic including validations, external function calls, etc.193
 */194
 function _callPreIssueHooks(195
 ISetToken _setToken,196
 uint256 _quantity,197
 address _caller,198
 address _to199
)200
 internal201
 returns(address)202
 {203
 IManagerIssuanceHook preIssueHook = managerIssuanceHook[_setToken];204
 if (address(preIssueHook) != address(0)) {205
 preIssueHook.invokePreIssueHook(_setToken, _quantity, _caller, _to);206
 return address(preIssueHook);207
 }208

209
 return address(0);210
 }211
}212

213

SLOC Appendix

Solidity Contracts

Language Files Lines Blanks Comments Code Complex

Solidity 17 4981 802 1193 2986 216

Comments to Code 1193/2986 = 40%

Javascript Tests

Language Files Lines Blanks Comments Code Complex

Typescript 27 15829 3016 404 12409 37

Tests to Code 12409/2986 = 415%

