0.7

mStable Process Quality Review

Score: 90%

Overview

This is a mStable Process Quality Review completed on July 21st 2021. It was performed using the Process
Review process (version 0.7.3) and is documented here. The review was performed by Nic of DeFiSafety.
Check out our Telegram. The previous version of the review (0.5) is here.

The final score of the review is 90%, an excellent pass. The breakdown of the scoring is in Scoring
Appendix. For our purposes, a pass is 70%.
Summary of the Process

Very simply, the review looks for the following declarations from the developer's site. With these
declarations, it is reasonable to trust the smart contracts.

e Here are my smart contracts on the blockchain

Here is the documentation that explains what my smart contracts do

Here are the tests | ran to verify my smart contract

Here are the audit(s) performed on my code by third party experts

Here are the admin controls and strategies

Disclaimer

This report is for informational purposes only and does not constitute investment advice of any kind, nor
does it constitute an offer to provide investment advisory or other services. Nothing in this report shall be
considered a solicitation or offer to buy or sell any security, token, future, option or other financial instrument
or to offer or provide any investment advice or service to any person in any jurisdiction. Nothing contained in
this report constitutes investment advice or offers any opinion with respect to the suitability of any security,
and the views expressed in this report should not be taken as advice to buy, sell or hold any security. The
information in this report should not be relied upon for the purpose of investing. In preparing the information
contained in this report, we have not taken into account the investment needs, objectives and financial
circumstances of any particular investor. This information has no regard to the specific investment
objectives, financial situation and particular needs of any specific recipient of this information and
investments discussed may not be suitable for all investors.

Any views expressed in this report by us were prepared based upon the information available to us at the
time such views were written. The views expressed within this report are limited to DeFiSafety and the
author and do not reflect those of any additional or third party and are strictly based upon DeFiSafety, its
authors, interpretations and evaluation of relevant data. Changed or additional information could cause such

views to change. All information is subject to possible correction. Information may quickly become unreliable
for various reasons, including changes in market conditions or economic circumstances.

This completed report is copyright (c) DeFiSafety 2021. Permission is given to copy in whole, retaining this
copyright label.
Chain

This section indicates the blockchain used by this protocol.

@ Chain: Ethereum, Polygon

Guidance:

Ethereum

Binance Smart Chain
Polygon

Avalanche

Code and Team

This section looks at the code deployed on the Mainnet that gets reviewed and its corresponding software
repository. The document explaining these questions is here. This review will answer the following
questions:

1) Are the executing code addresses readily available? (%)
2) Is the code actively being used? (%)

3) Is there a public software repository? (Y/N)

4) Is there a development history visible? (%)

5) Is the team public (hot anonymous)? (Y/N)

1) Are the executing code addresses readily available? (%)

@ Answer: 100%

They are available at website , as indicated in the Appendix.

Guidance:

100% Clearly labelled and on website, docs or repo, quick to find
70% Clearly labelled and on website, docs or repo but takes a bit of looking
40% Addresses in mainnet.json, in discord or sub graph, etc

20% Address found but labeling not clear or easy to find
0% Executing addresses could not be found

2) Is the code actively being used? (%)

@ Answer: 100%

Activity is 10 transactions a day on contract IncentivisedVotingLockup.sol, as indicated in the Appendix.

Guidance:

100% More than 10 transactions a day

70% More than 10 transactions a week
40% More than 10 transactions a month
10% Less than 10 transactions a month
0% No activity

3) Is there a public software repository? (Y/N)

@ Answer: Yes

GitHub: https://github.com/mstable.

Is there a public software repository with the code at a minimum, but also normally test and scripts. Even if
the repository was created just to hold the files and has just 1 transaction, it gets a "Yes". For teams with
private repositories, this answer is "No".

4) Is there a development history visible? (%)

@ Answer: 100%

With 574 and 5 branches, this is a healthy repository.

This metric checks if the software repository demonstrates a strong steady history. This is normally
demonstrated by commits, branches and releases in a software repository. A healthy history demonstrates a
history of more than a month (at a minimum).

Guidance:

100% Any one of 100+ commits, 10+branches
70% Any one of 70+ commits, 7+branches
50% Any one of 50+ commits, 5+branches

30% Any one of 30+ commits, 3+branches
0% Less than 2 branches or less than 30 commits

5) Is the team public (not anonymous)? (Y/N)

@ Answer: Yes

Location: https://docs.mstable.org/appendix/about-us.

Fora "Yes" in this question, the real names of some team members must be public on the website or other
documentation (LinkedIn, etc). If the team is anonymous, then this question is a "No".

Documentation

This section looks at the software documentation. The document explaining these questions is here.
Required questions are;

6) Is there a whitepaper? (Y/N)

7) Are the basic software functions documented? (Y/N)

8) Does the software function documentation fully (L00%) cover the deployed contracts? (%)

9) Are there sufficiently detailed comments for all functions within the deployed contract code (%)
10) Is it possible to trace from software documentation to the implementation in

code (%)

6) Is there a whitepaper? (Y/N)

(“) Answer: Yes

Location: https://docs.mstable.org/

7) Are the basic software functions documented? (Y/N)

(“) Answer: Yes

The basic software functions (code) of the mStable infrastructures and assets are well-documented.

8) Does the software function documentation fully (100%) cover the deployed contracts? (%)

@ Answer: 70%

There is not software function documentation, but very thorough and technical capabilities that mention the
main contracts. This gives a score of 70%. The documented software functions (code) of mStable cover
their app and its functions to their protocol architecture, as well as their data processing and validation
through mStable-js.

Guidance:

100% All contracts and functions documented

80% Only the major functions documented

79-1% Estimate of the level of software documentation
0% No software documentation

9) Are there sufficiently detailed comments for all functions within the deployed contract code (%)

() Answer: 90%

Code examples are in the Appendix. As per the SLOC, there is 58% commenting to code (CtC). The
commenting follows NatSpec fully for that reason the score for commenting is 90%

The Comments to Code (CtC) ratio is the primary metric for this score.

Note: The CtC was calculated using only files that were authored by the mStable developers. This means
that we did not include any interface, OpenZeppelin, and mock files (mock files were excluded because they
are, well, mocks that serve no executive purpose at the moment).

Guidance:

100% CtC > 100 Useful comments consistently on all code

90-70% CtC > 70 Useful comment on most code

60-20% CtC > 20 Some useful commenting

0% CtC < 20 No useful commenting

How to improve this score

This score can improve by adding comments to the deployed code such that it comprehensively covers the

code. For guidance, refer to the SecurEth Software Requirements.

10) Is it possible to trace from software documentation to the implementation in code (%)

/N Answer: 0%

With no explicit software documentation, there cannot be any traceability.

Guidance:

100% Clear explicit traceability between code and documentation at a requirement
level for all code

60% Clear association between code and documents via non explicit traceability

40% Documentation lists all the functions and describes their functions

0% No connection between documentation and code

Testing

This section looks at the software testing available. Itis explained in this document. This section answers
the following questions;

11) Full test suite (Covers all the deployed code) (%)

12) Code coverage (Covers all the deployed lines of code, or explains misses) (%)
13) Scripts and instructions to run the tests (Y/N)

14) Report of the results (%)

15) Formal Verification test done (%)

16) Stress Testing environment (%)

11) Is there a Full test suite? (%)
() Answer: 100%

Code examples are in the Appendix. As perthe SLOC, there is 4097% testing to code (TtC).

This score is guided by the Test to Code ratio (TtC). Generally a good test to code ratio is over 100%.
However the reviewers best judgement is the final deciding factor.

Guidance:

100% TtC >120% Both unit and system test visible
80% TtC >80% Both unit and system test visible
40% TiC <80% Some tests visible

0% No tests obvious

12) Code coverage (Covers all the deployed lines of code, or explains misses) (%)
@ Answer: 100%

mStable has a 96% coveralls code coverage score for their main contracts. However, they also have a 100%
ConsenSys Diligence code coverage score from their audit report.

Guidance:

100% Documented full coverage
99-51% Value of test coverage from documented results

50% No indication of code coverage but clearly there is a reasonably complete set
of tests

30% Some tests evident but not complete

0% No test for coverage seen

13) Scripts and instructions to run the tests (Y/N)

() Answer: Yes

Scripsl/instructions location: https://github.com/mstable/mStable-contracts/blob/master-v2/README.md.

14) Report of the results (%)

() Answer: 100%

Detailed test report from coveralls, as well as passing Cl reports from the mStable's GitHub repository.

Guidance:

100% Detailed test report as described below
70% GitHub code coverage report visible
0% No test report evident

15) Formal Verification test done (%)

/N Answer: 0%

No evidence of a mStable Formal Verification was found in their documentation or in web searches.

16) Stress Testing environment (%)

() Answer: 100%

There is clear evidence of mStable's test-net smart contract usages in their contracts' documentation.

Security

This section looks at the 3rd party software audits done. Itis explained in this document. This section
answers the following questions;

17) Did 3rd Party audits take place? (%)
18) Is the bounty value acceptably high?

17) Did 3rd Party audits take place? (%)

() Answer: 100%

mStable has had audits from ConsenSys Diligence and Bramah Systems (before deployment), as well as
from Certik and PeckShield (after deployment). All audit reports can be found here.

Guidance:

100% Multiple Audits performed before deployment and results public and
implemented or not required

90% Single audit performed before deployment and results public and implemented
or not required

70% Audit(s) performed after deployment and no changes required. Audit reportis
public

50% Audit(s) performed after deployment and changes needed but not implemented

20% No audit performed

0% Audit Performed after deployment, existence is public, report is not public and
no improvements deployed OR smart contract address' not found, question

Deduct 25% if code is in a private repo and no note from auditors that audit is applicable to deployed code

18) Is the bounty value acceptably high (%)

(1) Answer: 70%

mStable has a Immunefi Bug Bounty Program that is live and offers as much as 100k for the most critical of
findings.

Guidance:

100% Bounty is 10% TVL or at least $1M AND active program (see below)
90% Bounty is 5% TVL or at least 500k AND active program

80% Bounty is 5% TVL or at least 500k

70% Bounty is 100k or over AND active program

60% Bounty is 100k or over

50% Bounty is 50k or over AND active program

40% Bounty is 50k or over

20% Bug bounty program bounty is less than 50k
0% No bug bounty program offered

An active program means that a third party (such as Immunefi) is actively driving hackers to the site. An
inactive program would be static mentions on the docs.

Access Controls

This section covers the documentation of special access controls for a DeFi protocol. The admin access
controls are the contracts that allow updating contracts or coefficients in the protocol. Since these contracts
can allow the protocol admins to "change the rules", complete disclosure of capabilities is vital for user's
transparency. Itis explained in this document. The questions this section asks are as follow;

19) Can a user clearly and quickly find the status of the admin controls?

20) Is the information clear and complete?

21) Is the information in non-technical terms that pertain to the investments?
22) Is there Pause Control documentation including records of tests?

19) Can a user clearly and quickly find the status of the access controls (%)

() Answer: 100%

Governance can easily be found in the Governance section of their documentation.

Guidance:

100% Clearly labelled and on website, docs or repo, quick to find

70% Clearly labelled and on website, docs or repo but takes a bit of looking
40% Access control docs in multiple places and not well labelled

20% Access control docs in multiple places and not labelled

0% Admin Control information could not be found

20) Is the information clear and complete (%)

@ Answer: 90%

a) Most of the contracts are immutable, and few are upgradeable. This is described here.
b) There are defined roles in the governance section of the mStable documentation.
¢) The capabilities for change in contracts through voting are described here.

Guidance:

All the contracts are immutable -- 100% OR

a) All contracts are clearly labelled as upgradeable (or not) -- 30% AND
b) The type of ownership is clearly indicated (OnlyOwner / MultiSig / Defined Roles) -- 30% AND
¢) The capabilities for change in the contracts are described -- 30%

21) Is the information in non-technical terms that pertain to the investments (%)

@ Answer: 90%

All information pertaining governance and safety are all described in very user-friendly terms.

Guidance:

100% All the contracts are immutable

90% Description relates to investments safety and updates in clear, complete non-software |
language

30% Description all in software specific language

0% No admin control information could not be found

22) Is there Pause Control documentation including records of tests (%)

() Answer: 80%

Pause Control is mentioned in "Areas of interest”, and recent governance tests are recorded here.

Guidance:

100% All the contracts are immutable or no pause control needed and this is explained OR
100% Pause control(s) are clearly documented and there is records of at least one test
within 3 months

80% Pause control(s) explained clearly but no evidence of regular tests
40% Pause controls mentioned with no detail on capability or tests

0% Pause control not documented or explained

Appendices

Author Details
The author of this review is Rex of DeFi Safety.

Email : rex@defisafety.com Twitter : @defisafety

| started with Ethereum just before the DAO and that was a wonderful education. It showed the importance of

code quality. The second Parity hack also showed the importance of good process. Here my aviation
background offers some value. Aerospace knows how to make reliable code using quality processes.

| was coaxed to go to EthDenver 2018 and there | started SecuEth.org with Bryant and Roman. We created
guidelines on good processes for blockchain code development. We got EthFoundation funding to assistin

their development.

Process Quality Reviews are an extension of the SecurEth guidelines that will further increase the quality

processes in Solidity and Vyper development.

DeFiSafety is my full time gig and we are working on funding vehicles for a permanent staff.

Scoring Appendix

Total mStable
PQ Audit Scoring Matrix (v0.7) Points| Answer Points
Total| 260 233
Code and Team 90%
1) Are the executing code addresses readily available? (%) 20 100% 20
2) Is the code actively being used? (%) 5 100% 5
3) Is there a public software repository? (Y/N)) Y 5
4) Is there a development history visible? (%) 5 100% 5
5) Is the team public {not anonymous)? [Y/N) 15 Y 15
Code Documentation
6) Is there a whitepaper? (¥/N) 5 Y 5
7) Are the basic software functions documented? (Y/N) 10 Y 10
8) Does the software function documentation fully (100%) cover the deployed contracts? (%) 15 70% 10.5
3) Are there sufficiently detailed comments for all functions within the deployed contract code (%) 5 90% 4.5
10} Is it possible to trace from software documentation to the implementation in code (%) 10 0% 0
Testing
11) Full test suite {Cowvers all the deployed code) (32) 20 100% 20
12) Code coverage (Covers all the deployed lines of code, or explains misses) (%) 5 100% 5
13) Scripts and instructions to run the tests? (Y/N) 5 Y 5
14) Report of the results (%) 10 100% 10
15) Formal Verification test done (%) 5 0% v]
16) Stress Testing environment (%)) 100% 5
Security
17) Did 3rd Party audits take place? (%) 70 100% 70
18) Is the bug bounty acceptable high? (%) 10 70% 7
Access Controls
19) Can a user clearly and quickly find the status of the admin controls 5 100% 5
20) Is the information clear and complete 10 90% 9
21) Is the infarmation in non-technical terms 10 90% 9
22) Is there Pause Control documentation including records of tests 10 80% B
Section Scoring
Code and Team 50 100%
Documentation as 67%
Testing 50 90%
Security 20 96%
Access Controls 35 89%

Executing Code Appendix

Mainnet Polygon Mainnet Ropsten Polygon Mumbai

Contract Address

Meta (MTA) Oxa3BeD4E1c75D00fa6f4ESE6G22DB7261B5E9ACD2
Voting Meta Token (vIMTA) OxaE8bCI96DA4F9A9613c323478BE181FDb2Aa0ET1BF
Delayed Proxy Admin 0x5C8eb57b44C1c6391fC7aBA0cf44d26896f92386
Rewards Distributor 0x04dfDfad471b79cc9EBGEBC355e6C71F8eC4916C50
Protocol DAO Gnosis Safe OxF6FF1F7FCEB2cE6d26687EaaB5988b445d0b94a2
mStable DAO Gnosis Safe 0x3dd46846eedB8D147841AE162C8425c08BD8E1b41
Ejector 0x71061E3F432FC5BeE3A6763Cd35F50D3CT77AD434

Poker of Boosted Savings Vaults 0x8E1Fd7F5ea7{7760a83222d3d470dFBf8493A03F

Code Used Appendix

Ether Transactions for Oxae8bc96da4f9a9613c323478bel 81fdb2aalel bf
Source: Etherscan.io

Zoom Im 6&m v Al From | Jun 20, 2021 ‘ To ‘ Jul 20, 2021

20 Jun 22 Jun 24.Jun 26 Jun 28. Jun 30. Jun 2 Jul 4 Jul 6. Jul 8 Jul 10. Jul 12 Jul 14, Jul 16. Jul 18 Jul 20 Jul

I]
\ a i
o \/\"v e £ O Y, LY NSy SO TR W Yo s S VAP | Y Tt NSNS S DD, (R | U TS0 R 21 Ly

@ Ethereum Transactions [] Unique Outgoing Address [] Unique Incoming Address

Example Code Appendix

1 /*xx

2 * @title Nexus

3 % @author mStable

4 x @notice Address provider and system kernel, also facilitates governance changes

=

© 00 N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

* @dev

*
*

*

*/

The Nexus 1is mStable's Kernel, and allows the publishing and propagating

of new system Modules. Other Modules will read from the Nexus
VERSION: 3.0
DATE: 2021-04-15

contract Nexus 1is INexus, DelayedClaimableGovernor {

event
event
event
event
event

event

ModuleProposed (bytes32 indexed key, address addr, uint256 timestamp);
ModuleAdded (bytes32 indexed key, address addr, bool islLocked);
ModuleCancelled(bytes32 indexed key);

ModuleLockRequested(bytes32 +indexed key, uint256 timestamp);
ModulelLockEnabled (bytes32 indexed key);

ModuleLockCancelled(bytes32 qindexed key);

/** @dev Struct to store +information about current modules x/
struct Module {

address addr; // Module address

bool disLocked; // Module lock status

/** @dev Struct to store information about proposed modules x*/

struct Proposal {

address newAddress; // Proposed Module address

ui

nt256 timestamp; // Timestamp when module upgrade was proposed

// 1 week delayed upgrade period
uint256 public constant UPGRADE_DELAY = 1 weeks;

// Module-key => Module

mapping(bytes32 => Module) public modules;

// Module-address => Module-key

mapping(address => bytes32) private addressToModule;

// Module-key => Proposal

mapping(bytes32 => Proposal) public proposedModules;

// Module-key => Timestamp when lock was proposed

mapping(bytes32 => uint256) public proposedLockModules;

// Ini

t flag to allow add modules at the time of deplyment without delay

bool public initialized = false;

[x*

* @dev Modifier allows functions calls only when contract is not dinitialized.

*/

modi fi

er whenNotInitialized() {

require(!initialized, "Nexus is already initialized");

-

[*%

* @dev Initialises the Nexus and adds the core data to the Kernel (itself and governo

* @param _governorAddr Governor address

*/

constructor (address _governorAddr) DelayedClaimableGovernor (_governorAddr, UPGRADE_DEL,

58

59 // FIXME can this function be avoided as it just calls the super function
60 function governor() public view override(Governable, INexus) returns (address) {
61 return super.governor();

62 }

63

64 [x%

65 * @dev Adds multiple new modules to the system to initialize the

66 * Nexus contract with default modules. This should be called first
67 * after deploying Nexus contract.

68 * @param _keys Keys of the new modules in bytes32 form

69 * @param _addresses Contract addresses of the new modules

70 * @param _isLocked IsLocked flag for the new modules

71 * @param _governorAddr New Governor address

72 * @return bool Success of publishing new Modules

73 */

74 function dnitialize(

75 bytes32[] calldata _keys,

76 address[] calldata _addresses,

77 bool[] calldata _isLocked,

78 address _governorAddr

79) external onlyGovernor whenNotInitialized returns (bool) {

80 uint256 len = _keys.length;

81 require(len > 0, "No keys provided");

82 require(len == _addresses.length, "Insufficient address data");
83 require(len == _islLocked.length, "Insufficient locked statuses");
84

85 for (uint256 i = 0; i < lenj; i++) {

86 _publishModule(_keys[i], _addresses[i], _isLocked[i]);

87 }

88

89 if (_governorAddr != governor()) _changeGovernor(_governorAddr);
90

91 initialized = true;

92 return true;

93 }

94

95 /***************************************

96 MODULE ADDING

97 **/

98

99 [**

100 * @dev Propose a new or update existing module

101 * @param _key Key of the module

102 * @param _addr Address of the module

103 */

104 function proposeModule(bytes32 _key, address _addr) external override onlyGovernor {
105 require(_key != bytes32(0x0), "Key must not be zero");

106 require(_addr != address(0), "Module address must not be 0");

107 require(!modules[_key].isLocked, "Module must be unlocked");

108 require(modules[_key].addr != _addr, "Module already has same address");
109 Proposal storage p = proposedModules[_key];

110 ronmiiraln timactamn == @ "Madiila alraadyv nranncad!) -

111

PUYu (e b ime o vuimp vy FIUUU LL UL Luuy P VpVUOLSU)y

112 p.newAddress = _addr;
113 p.timestamp = block.timestamp;
114 emit ModuleProposed(_key, _addr, block.timestamp);
115 }
116
117 [**
118 * @dev Cancel a proposed module request
119 * @param _key Key of the module
120 x/
121 function cancelProposedModule (bytes32 _key) external override onlyGovernor {
122 uint256 timestamp = proposedModules[_key].timestamp;
123 require(timestamp > 0, "Proposed module not found");
124
125 delete proposedModules[_key];
126 emit ModuleCancelled(_key);
127 1
128
129 VA
130 * @dev Accept and publish an already proposed module
131 * @param _key Key of the module
132 */
133 function acceptProposedModule (bytes32 _key) external override onlyGovernor {
134 _acceptProposedModule(_key);
135 }
136
137 [x*
138 * @dev Accept and publish already proposed modules
139 * @param _keys Keys array of the modules
140 */
141 function acceptProposedModules (bytes32[] calldata _keys) external override onlyGoverno
142 uint256 len = _keys.length;
143 require(len > 0, "Keys array empty");
144
SLOC Appendix

Solidity Contracts

Language Files Lines Blanks Comments Code Complex

Solidity

49 11939 1334 3893 6712 680

Comments to Code 3893/6712 = 58%

Javascript Tests

Language r Lines
TypeScript 5 23163
JSON 18 256276

Tests to Code 275049/6712 = 4097%

PR Y

~
CUlHrierin

2092

0

~
CUITIPICEA

814

0

