
0.5

mStable Process Quality Review

Score: 97%

This is an mStable Process Quality Review completed on 21 October 2020. It was performed using the
Process Review process (version 0.5) and is documented . The review was performed by ShinkaRex
of . Check out our .

here
Caliburn Consulting Telegram

The final score of the review is 97%, a stupendous score. The breakdown of the scoring is in
.

Scoring
Appendix

Summary of the Process

Very simply, the review looks for the following declarations from the developer's site. With these
declarations, it is reasonable to trust the smart contracts.

1. Here is my smart contract on the blockchain

2. You can see it matches a software repository used to develop the code

3. Here is the documentation that explains what my smart contract does

4. Here are the tests I ran to verify my smart contract

5. Here are the audit(s) performed to review my code by third party experts

Disclaimer

This report is for informational purposes only and does not constitute investment advice of any kind, nor
does it constitute an offer to provide investment advisory or other services. Nothing in this report shall be
considered a solicitation or offer to buy or sell any security, future, option or other financial instrument or to
offer or provide any investment advice or service to any person in any jurisdiction. Nothing contained in this
report constitutes investment advice or offers any opinion with respect to the suitability of any security, and
the views expressed in this report should not be taken as advice to buy, sell or hold any security. The
information in this report should not be relied upon for the purpose of investing. In preparing the information
contained in this report, we have not taken into account the investment needs, objectives and financial
circumstances of any particular investor. This information has no regard to the specific investment
objectives, financial situation and particular needs of any specific recipient of this information and
investments discussed may not be suitable for all investors.

Any views expressed in this report by us were prepared based upon the information available to us at the
time such views were written. Changed or additional information could cause such views to change. All
information is subject to possible correction. Information may quickly become unreliable for various reasons,
including changes in market conditions or economic circumstances.

https://docs.defisafety.com/audit-process-documentation/process-quality-audit-process
https://caliburnc.com/
https://t.me/joinchat/Hnf-exmsTNGgmq6SYKCPCA

Executing Code Verification

This section looks at the code deployed on the Mainnet that gets reviewed and its corresponding software
repository. The document explaining these questions is . This review will answer the questions;here

1. Are the executing code address(s) readily available? (Y/N)

2. Is the code actively being used? (%)

3. Are the Contract(s) Verified/Verifiable? (Y/N)

4. Does the code match a tagged version in the code hosting platform? (%)

5. Is the software repository healthy? (%)

Are the executing code address(s) readily available? (Y/N)

Answer: Yes

They are available at Address as indicated in the
. This review only covers the contract IncentivisedVotingLockup.sol.

https://docs.mstable.org/developers/deployed-addresses
Appendix

Is the code actively being used? (%)

Answer: 100%

Activity is 38 transactions a day, as indicated in the .Appendix

Are the Contract(s) Verified/Verifiable? (Y/N)

Answer: Yes

0xaE8bC96DA4F9A9613c323478BE181FDb2Aa0E1BF is the Etherscan verified contract address.

Does the code match a tagged version on a code hosting platform? (%)

Answer: 100%

Guidance:

100% All code matches and Repository was clearly labelled
60 % All code matches but no labelled repository. Repository was found manually
30% Almost all code does match perfectly and repository was found manually
0% Most matching Code could not be found

https://docs.defisafety.com/audit-process-documentation/process-quality-audit-process#executing-code-verification
https://docs.mstable.org/developers/deployed-addresses

GitHub address : https://github.com/mstable/mstable-contracts

Deployed contracts in the following file;

mstable_deployed.rar 21KB

Binary

Matching Repository: https://github.com/mstable/mStable-contracts/tree/master/contracts

Is development software repository healthy? (%)

Answer: 100%

With 4 branches and 172 commits, this is a healthy Repository.

Documentation

This section looks at the software documentation. The document explaining these questions is .here

Required questions are;

1. Is there a whitepaper? (Y/N)

2. Are the basic application requirements documented? (Y/N)

3. Do the requirements fully (100%) cover the deployed contracts? (%)

4. Are there sufficiently detailed comments for all functions within the deployed contract code (%)

5. Is it possible to trace software requirements to the implementation in code (%)

Is there a whitepaper? (Y/N)

Answer: Yes

The whitepaper is featured in the documentation.

Location: https://docs.mstable.org/

Are the basic application requirements documented? (Y/N)

Answer: Yes

https://github.com/mstable/mstable-contracts
https://github.com/mstable/mStable-contracts/tree/master/contracts
https://docs.defisafety.com/audit-process-documentation/process-quality-audit-process#documentation
https://docs.mstable.org/

Location: https://docs.mstable.org/developers/integrating-mstable

The basic functions are documented on this webpage. By consulting the individual pages within these
documents you can find the in-depth documentation that goes over the most of the functions within their
software.

Do the requirements fully (100%) cover the deployed contracts? (%)

Answer: 100%

I found specific document requirements about the deployed contracts in the documentation. However, there
are still some functions that remain undefined in their documentation. The documentation is extensive, and
extremely high quality, but not 100% complete.

Are there sufficiently detailed comments for all functions within the deployed contract code (%)

Answer: 100%

Very detailed comments throughout. NatSpec in detail at the start of every function and comments within the
function where required.

Code examples are in the . As per the , there is 126% commenting to code.Appendix SLOC

Is it possible to trace requirements to the implementation in code (%)

Answer: 100%

Clear Traceability between the code and the documentation.

Guidance:
100% - Clear explicit traceability between code and documentation at a requirement level for all code
60% - Clear association between code and documents via non explicit traceability
40% - Documentation lists all the functions and describes their functions
0% - No connection between documentation and code

Testing

This section looks at the software testing available. It is explained in this . This section answers document

https://docs.mstable.org/developers/integrating-mstable
https://docs.defisafety.com/audit-process-documentation/process-quality-audit-process#testing

the following questions;

1. Full test suite (Covers all the deployed code) (%)

2. Code coverage (Covers all the deployed lines of code, or explains misses) (%)

3. Scripts and instructions to run the tests (Y/N)

4. Packaged with the deployed code (Y/N)

5. Report of the results (%)

6. Formal Verification test done (%)

7. Stress Testing environment (%)

Is there a Full test suite? (%)

Answer: 100%

Tests are clearly indicated on the GitHub along with test setups.

Code coverage (Covers all the deployed lines of code, or explains misses) (%)

Answer: 98.6%

Full coverage is documented in the audit done by , page 28.Consensys

Guidance:
100% - Documented full coverage
99-51% - Value of test coverage from documented results
50% - No indication of code coverage but clearly there is a reasonably complete set of tests
30% - Some tests evident but not complete
0% - No test for coverage seen

How to improve this score

This score can improve by adding tests achieving full code coverage. A clear report and scripts in the
software repository will guarantee a high score.

Scripts and instructions to run the tests (Y/N)

Answer: Yes

Location: https://docs.mstable.org/developers/introduction/get-set-up-on-ropsten

Packaged with the deployed code (Y/N)

https://docs.mstable.org/protocol/security#auditing
https://docs.mstable.org/developers/introduction/get-set-up-on-ropsten

Answer: Yes

Report of the results (%)

Answer: 100%

There is a report of the results in their audit from Consensys Diligence.

Formal Verification test done (%)

Answer: 0%

There is no evidence of formal verification testing done.

Stress Testing environment (%)

Answer: 100%

They have clear instructions for .ropsten setup

Audits

Answer: 100%

Two audits have been preformed by The Audit by Consensys
diligence was preformed before deployment. (July 2020) The audit from Bramah Systems was preformed
before deployment. (April 2020)

Consensys Diligence and Bramah Systems.

Guidance:

1. Multiple Audits performed before deployment and results public and implemented or not required
(100%)

2. Single audit performed before deployment and results public and implemented or not required (90%)

3. Audit(s) performed after deployment and no changes required. Audit report is public. (70%)

4.
No audit performed (20%)

5. Audit Performed after deployment, existence is public, report is not public and no improvements

https://docs.mstable.org/protocol/security#auditing
https://docs.mstable.org/developers/introduction/get-set-up-on-ropsten
https://docs.mstable.org/protocol/security#auditing

5. Audit Performed after deployment, existence is public, report is not public and no improvements
deployed OR smart contract address' not found, question 1 (0%)

Appendices

Author Details

The author of this review is Rex of .Caliburn Consulting

Email : defisafety.com Twitter : @defisafety rex@

I started with Ethereum just before the DAO and that was a wonderful education. It showed the importance of
code quality. The second Parity hack also showed the importance of good process. Here my aviation
background offers some value. Aerospace knows how to make reliable code using quality processes.

I was coaxed to go to EthDenver 2018 and there I started with Bryant and Roman. We created
guidelines on good processes for blockchain code development. We got to assist in
their development.

SecuEth.org
EthFoundation funding

Process Quality Reviews are an extension of the SecurEth guidelines that will further increase the quality
processes in Solidity and Vyper development.

Career wise I am a business development manager for an avionics supplier.

Scoring Appendix

https://caliburnc.com/
mailto:rex@caliburnc.com
https://guidelines.secureth.org/
https://blog.ethereum.org/2018/05/02/announcing-may-2018-cohort-ef-grants/

Executing Code Appendix

Code Used Appendix

Example Code Appendix

 /**1
 * @dev Sets the address of the proxy admin.2
 * @param newAdmin Address of the new proxy admin.3
 */4
 function _setAdmin(address newAdmin) internal {5
 bytes32 slot = ADMIN_SLOT;6

7
 assembly {8
 sstore(slot, newAdmin)9
 }10
 }11

12
 /**13
 * @dev Only fall back when the sender is not the admin.14
 */15
 function _willFallback() internal {16
 require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");17
 super._willFallback();18
 }19
}20

21
/**22
 * @title InitializableUpgradeabilityProxy23

 * @dev Extends BaseUpgradeabilityProxy with an initializer for initializing24
 * implementation and init data.25
 */26
contract InitializableUpgradeabilityProxy is BaseUpgradeabilityProxy {27
 /**28
 * @dev Contract initializer.29
 * @param _logic Address of the initial implementation.30
 * @param _data Data to send as msg.data to the implementation to initialize the proxied 31
 * It should include the signature and the parameters of the function to be called, as de32
 * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argumen33
 * This parameter is optional, if no data is given the initialization call to proxied con34
 */35
 function initialize(address _logic, bytes memory _data) public payable {36
 require(_implementation() == address(0));37
 assert(IMPLEMENTATION_SLOT == bytes32(uint256(keccak256('eip1967.proxy.implementation')38
 _setImplementation(_logic);39
 if(_data.length > 0) {40
 (bool success,) = _logic.delegatecall(_data);41
 require(success);42
 }43
 }44
}45

46
/**47
 * @title InitializableAdminUpgradeabilityProxy48
 * @dev Extends from BaseAdminUpgradeabilityProxy with an initializer for49
 * initializing the implementation, admin, and init data.50
 */51
contract InitializableAdminUpgradeabilityProxy is BaseAdminUpgradeabilityProxy, Initializab52
 /**53
 * Contract initializer.54
 * @param _logic address of the initial implementation.55
 * @param _admin Address of the proxy administrator.56
 * @param _data Data to send as msg.data to the implementation to initialize the proxied 57
 * It should include the signature and the parameters of the function to be called, as de58
 * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argumen59
 * This parameter is optional, if no data is given the initialization call to proxied con60
 */61
 function initialize(address _logic, address _admin, bytes memory _data) public payable {62
 require(_implementation() == address(0));63
 InitializableUpgradeabilityProxy.initialize(_logic, _data);64
 assert(ADMIN_SLOT == bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1));65
 _setAdmin(_admin);66
 }67
}68

69
/**70
 * @notice MassetProxy delegates calls to a Masset implementation71
 * @dev Extending on OpenZeppelin's InitializableAdminUpgradabilityProxy72
 * means that the proxy is upgradable through a ProxyAdmin. MassetProxy upgrades73
 * are implemented by a DelayedProxyAdmin, which enforces a 1 week opt-out period.74
 * All upgrades are governed through the current mStable governance.75
 */76

contract MassetProxy is InitializableAdminUpgradeabilityProxy {77

}78
79

/**80
 * @notice BasketManagerProxy delegates calls to a BasketManager implementation81
 * @dev Extending on OpenZeppelin's InitializableAdminUpgradabilityProxy82
 * means that the proxy is upgradable through a ProxyAdmin. BasketManagerProxy upgrades83
 * are implemented by a DelayedProxyAdmin, which enforces a 1 week opt-out period.84
 * All upgrades are governed through the current mStable governance.85
 */86
contract BasketManagerProxy is InitializableAdminUpgradeabilityProxy {87

SLOC Appendix

Solidity Contracts

Language Files Lines Blanks Comments Code Complex

Solidity 4 2640 311 1299 1030 97

Comments to Code 1299/ 1030 = 126%

Javascript Tests

Language Files Lines Blanks Comments Code Complex

JavaScript 8 2397 251 199 1947 53

Tests to Code 1947/ 1030 = 10%

